LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION – PHYSICS

FOURTH SEMESTER – APRIL 2015

PH 4959 - PARTICLE PHYSICS

Date : 24/04/2015 Time : 09:00-12:00

Answer **ALL** the questions.

Dept. No.

Max.: 100 Marks

SECTION-A

(10 x 2 = 20 Marks)

- -
 - 1. State two properties of the quanta of (i) electromagnetic (ii) weak interaction field.
 - 2. Write down the multiplets of the isospin I=3/2 baryons, their quark constitution and their charge.
 - 3. What are spinors?
 - 4. Define the helicity operator. What is its use?
 - 5. Are neutral current decays observed in atomic systems? Why?
 - 6. Write down the (i) gluon and (ii) quark Lagrangian density.
 - 7. How was the weak interaction discerned? Why was it considered weak?
 - 8. What is the lower limit for the mass of the Higgs boson?
 - 9. Estimate the coupling constant between the electron field and the Higgs field .
 - 10. What are colour singlets?

SECTION -B

Answer any **FOUR** questions.

- 11. Describe the spectrum of baryon states on the basis of a simple shell model of three confined quarks.
- 12. Write down the Lagrangian density for a charged scalar field and show that it is invariant under charge conjucation.
- 13. Show that the law of conservation of particles arises as a consequence of global U(1) symmetry.
- Explain how the proposed approximate masses for the W[±], Z Bosons as the low energy limit of Weinberg-Salam theory is in good agreement with the experimental values.
- 15. Discuss the quark-antiquark interaction at short distance and account for the slow motion of the Charmonium and bottomonium.

SECTION -C

Answer any **FOUR** questions.

16. Write down the Lagrangian density for an electromagnetic field and establish the following:

(i) Maxwell's equation (ii) General solution of Maxwell's equation in free space.

- 17. From Dirac's equation for free particle, derive information about (i) intrinsic spin of the Dirac particle (ii) plane wave solution of the Dirac equation.
- 18. (a) Construct a Lagrangian density which is invariant under a local SU(2) transformation as well as a local U(1) transformation.
 - (b) Explain how introducing mass brings about the local symmetry breaking.

 $(4 \times 7.5 = 30 \text{ Marks})$

(4 x 12.5 = 50 Marks)

- (a) Construct a gauge-invariant and Lorentz-invariant expression for the dynamical part of the Langragian density for the electron and the electron neutrino.
 - (b) Discuss the coupling of the lepton fields to the W gauge fields.
- 20. Show from QCD using asymptotic freedom that the effective strong interaction coupling constant decreases with increase in momentum transfer in contrast to that in QED.
